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A triple heat exchanger consists of essentially three heat exchangers interconnected to 
form two circulating loops of fluid flow. A dynamic model in dimensionless form is 
formulated with the boundary conditions to suit the particular experimental triple heat 
exchanger described in Part II of the paper. By applying the method of weighted residual 
to the double-pipe heat exchangers and the upwind weighted residual method to the 
single tube heat exchanger and the connecting pipes, a generalized governing matrix 
differential equation for all types of inputs including the flow disturbances is obtained for 
computer simulation. 
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In t roduct ion 

A triple heat exchanger essentially consists of three heat 
exchangers linked together by connecting pipes to form two 
circulating loops, one between the single tube heat exchanger 
(STHE) and the primary heat exchanger--named as the primary 
loop--and the other between primary and secondary heat 
exchangers--named as the carrier loop (as shown in Figure 1). 
In the present study the double-pipe heat exchanger (DPHE) 
is used for both the primary and secondary heat exchangers. 
The thermal energy is eventually transferred from the heat 
source in the STHE to the shell fluid of the secondary heat 
exchanger. Such heat transfer systems are widely applied in 
nuclear reactor power plants and solar heating systems. 

In a large class of heat exchanger control problems, the fluid 
discharge temperature is controlled by manipulation of the flow 
rate of the other fluid in the system. Flow-forced dynamics 
of heat exchangers have therefore been intensively studied. 
Mozley 1 derived a five-sectioned lumped parameter model in 
which wall effects were ignored and heat transfer coefficient 
was assumed to be independent of flow-rate. He derived the 
transfer functions relating outlet temperature changes to tube 
fluid velocity change. Law 2 employed the nonlinear relationship 
between the heat transfer coefficient and flow-rate, and took 
wall effect into account in his derivation. The derivation of the 
transfer functions was based on the linearization of the system 
equations about the steady-state operating point. Later, Privott 
and Ferrell 3 even considered the variations of heat transfer 
coefficient with temperature as well as flow-rate in his nonlinear 
model. The nonlinear model was simplified by omitting the 
temperature dependence of the heat transfer coefficient and 
linearizing the system equations about the steady state operating 
point. In general, nonlinear terms due to multiplicative terms 
of temperatures and flow-rates exist. The linear model is rather 
inaccurate unless the magnitude of flow disturbance is small. 
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In such a case, the measurements of temperature transients are 
difficult in view of small changes of steady-state temperatures. 

Modern approaches attempt to establish system models that 
adapt to the use of efficient computing techniques. Early on, 
Chiu and Fung 4 built an experimental triple heat exchanger 
system to verify the theoretical results of temperature responses 
for sudden changes of heat input and secondary inlet temper- 
ature. They first studied the dynamics of the individual heat 
exchangers. 5 Because of the success of their proposed models, 
a similar approach was again employed. The method of 
weighted residuals (MWR) proposed by Finlayson 6 and applied 
to the heat exchanger problems of Kanoh ~ was used to 
formulate the dynamic models of primary and secondary heat 
exchangers. For the single tube heat exchanger and the four con- 
necting pipes, their models are primarily characterized by an 
advective equation. In this case, the upwind weighted residual 
method (UWR) 8'9 is adopted. 
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Schematic diagram of triple heat exchanger 

10 Int. J. Heat and Fluid Flow, Vol. 11, No. 1, March 1990 



Dynamics of a triple heat exchanger--Part I: P. C. Chiu and E. H. K. Fung 

Dynamic model 

The mathematical model of the triple heat exchanger as shown 
in Figure 1 is derived from the fundamental equations of the 
distributed parameter model for the individual heat exchangers 
and the connecting pipes. The following assumptions are made: 

Genera l - -  
1. the liquids are incompressible and their physical properties 

(specific gravity, specific heat and viscosity) are constant; 
2. the physical properties (specific gravity and specific heat) of 

the metal walls are constant; 
3. the temperature and velocity profiles of the liquids are 

uniform in the radial directions. 

Double-pipe heat exchanger--  
4. the tube wall and shell wall thermal capacitances are 

additive to those of the tube liquid and shell liquid 
respectively; 

5. the thermal capacitances of the headstocks of the heat 
exchanger are additive to that of the shell wall; 

6. the steady state overall heat transfer coefficient U between 
the two liquids are assumed to be of the form 

U-X = [pxvO.S 3 -1 + [p2vO.a] -1 

where Pl and P2 are constants; 
7. the change of overall heat transfer coefficient for a change 

of flow-rate is proportional to the change of flow-rate; 
8. the heat loss rate to the surroundings is proportional to 

the temperature difference between the liquid and the 
surroundings. This is experimentally verified to be correct. 

Single tube heat exchanger--  
9. the thermal capacitance of the metal wall is additive to that 

of the liquid; 
10. the heat loss rate to the surroundings is proportional to 

the power of temperature difference between the liquid and 
the surroundings. This is experimentally verified to be 
correct for the particular installation of the immersion 
heaters from a number of steady state temperature readings 
taken under different power input and flow conditions; 

11. the heater dynamics are negligible. 

Notation 

A,B 
ai 
bi 
Ci 
¢, ¢c, ¢5, ¢w 

Cl, C2, Ca, Ct 

Di 
FI, F2 

f ,  f l ,  f2, A 
hL 
kl, k2 
t 

Li 

M, M1, M2, M s 

M,, Ms, Mr, Mw 

mi,j 

N i  
Pi 
q 
rl ,  r2, r3 

r4 
rm 
Si 

31 x 31 matrices 
Dimensionless coefficients, i = 1 to 6 
Dimensionless coefficients, i = 1, 2 
Intermediate constants, i =  1 to 5 
Specific heat capacities of liquid and 
metal in connecting pipes, and liquid 
and metal wall in STHE 
Specific heat capacities of shell and tube 
fluids, shell and tube walls 
3 x 1 matrices, i =  3 to 7 
Functions defined by Equations 17 and 
18 
Dimensionless parameters 
Heat loss coefficient in a heat exchanger 
Constant coefficients 
Dimensionless distance variable = 
2(x.JL~)- 1 
Lengths of various components in the 
triple heat exchanger corresponding to 
x i, i=1 ,  2, 5 , . . . , 9  
Masses per unit length of liquid in 
connecting pipe, shell and tube 
liquids (DPHE), and liquid in STHE 
respectively 
Equivalent masses per unit length of 
connecting pipe wall, shell and tube 
walls (DPHE), and metal wall of STHE 
respectively 
Normalized heat transfer constants 
i , j = l , 2  
Mass flow rates of shell and tube liquids 
(DPHE), and liquid of STHE 
respectively 
31 x 31 matrices, i = 1, 2, 3 
31 × 1 matrices, i =  1 , . . . ,  5 
Heating rate per unit length 
Dimensionless ratios of velocities in the 
triple heat exchanger 
Outer radius of the outer tube in DPHE 
Mean radius of the inner tube in DPHE 
Matrices, i = 1, 2, 3 

Yi 
T,, Tp, Tel, To2, Ts 

To 
T,. 

Tsi, 

t 
U 

U1, U2 

Ui 

V 1 , V 2 

Vl, V2, /3 5 

Vi 
X, 
X 

Xi 

O~ 
6 
Oi 

Subscripts 
{ } 
[ q 
,1 
,2 
i , j , k  

Matrices, i = 1, 2, 3, 4 
Liquid temperatures at various locations 
in the triple heat exchanger, i = 5 . . . . .  9 
Ambient temperature 
Initial steady state temperature, 
i = index - variable 
Inlet temperature of secondary heat 
exchanger 
Liquid temperature as function of z 
and t 
Real time 
4 x 1 column vector with elements in 
Legendre polynomials 
Overall heat transfer coefficients of the 
primary and secondary heat exchangers 
Dimensionless disturbances, 
i=1  . . . .  ,11 
Matrices defined in Equations 21 and 
22 
Velocities of shell and tube liquids 
(DPHE) and liquid of STHE 
respectively 
Velocities in various pipes, i = 6 . . . . .  9 
Temperature vectors, i =  1 , . . . ,  9 
31 x 1 temperature vector in Equation 
33 
Distance variables in the triple heat 
exchanger i=  1, 2, 5 . . . .  ,9 
Dimensionless parameter 
Delta function 
Dimensionless temperature deviations 
of liquids, i = 1 , . . . ,  9 
Dimensionless time = t/[L1/v2.1(O)] 
Dimensionless pure time delays, 
i = 5  . . . . .  9 

Vector 
Matrix 
Primary heat exchanger 
Secondary heat exchanger 
Index variables 
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Connecting pipes-- 
12. the thermal capacitance of the metal wall is additive to that rh1,1(0)c1,1 

of liquid; 
13. the heat loss is negligible, rl-/)2'1(0) 

Under these assumptions, the resulting mathematical model v~,l (0) 
for the triple heat exchanger is established from component v2,1(0)L2 
equations with the boundary conditions chosen to suit the ~ 3 - - -  
particular physical requirements. For the equations derived /)2,2(0)L1 
below, the second subscript in double subscripts separated by 
a comma indicates the primary (1) or secondary (2) heat 
exchanger. 

aT,_~ (1 +f1.1) aT ,_  2nrm, l U~ (L1 - T,) 

0X1 /)1,1 ~t  n'I1.1¢1.1 

2nr4 l hz 1 
' ' ( T  a -  T , )  (1) 

rh1,1c1,1 

OT~t ( l+ f2  1)0Td 2nr~,lU1 (Tp-T~I) (2) _ _ . +  ~ '  _ 
0X1 1)2,1 ~ t  /?12,1C2,1 

0T~ (1+f12)aT~ 2nrm.2U2 (T~2_T~ ) 
0X2 1)1,2 0t  rhl ,2Cl ,  2 

2nr4 2hL 2 
-~ ' ' ( T = -  T.) (3) 

t~11,2Cl,2 

63Tc2 (1 +f2 2) aTe2 2nrra'2U2 (T , -  To2 ) (4) 

~X2 1)2,2 Ot /~12,2C2, 2 Ul - 

aT 5 (1 +fs) OT5 q k2(Ts- T~) ~ 
- (5) 

Oxs 1)5 & rhsC5 rasc5 us_ 
aT i (1 + f )  OTi vl,2(0) 

+ - -  0, i = 6, 7, 8, 9 (6) 
ax~ vi at v~(~)- vi(0) 

1 l i -  

T h e  boundary conditions are v~(0) 
q(z)--q(O) Ti(t, 0)= T~(t, L,) (7a) ul ° _ -  

f o r  i = 5, 6, 7, 8, 9, p, cl, c2, and corresponding j = 8, c2, cl, p, q(0) 
5, 9, 6, 7, and k=8,  2, 1, 1, 5, 9, 6, 7 

T~(t, L2)= T,i.(t) (7b) 

The initial conditions are 

T~(O, x~) = Ti,(x~) for appropriate i, j (8) 

Problem formulation and solution 

Although in the present study only three flow disturbance 
inputs--namely primary loop water flow-rate, carrier loop 
water flow-rate and secondary inlet flow-rate--are studied, it 
will be useful for the purpose of generality to include the other 
two inputs, namely secondary inlet temperature and power 
input, in the analysis. To put this model in a general dimension- 
less form, the following dimensionless variables are defined. 

2nr,,.i U l[vl,l (O), 1)2,1(0)]L1 
a I - -  rh1,1(0)c1,1 

2nr,,.xUl[vLl(O), 1)2.1 (0)ILl 
a 2 - -  

?'h2,1 (0)C2, I 

2rtr=, 2 U2[1) 1,2(0),  1)2,2(0)']L2 
a 3 - 

1~I 1,2 (O)c 1,2 

2nr=,2 U211)1,2(0), 1)2,2(0)]L2 
a 4 -- 

?h2.2(0)c2,2 

27zr4.1hL,1L1 
a 5 - -  

2~r4,2hL,2L2 
a6-- rhl,2(0)cl,2 

v2,1(0)L2 

1)1,2(0)L1 

f_M¢c~ 
Mc 

Ms,iCs,i  
f l , i -  ~ , i=1,2 

M l , i  1,i 

M wcw 
A -  

Mscs 

~(~, t ) -  ~ ( 0 ,  t) 
01 - 7".(0, - 1 ) -  T~I(0, - 1) 

L(~, t ) -  L(o ,  t) 
0a - L2(0, - 1 ) -  L(0,  1) 

T~(~, t ) -  L(o, t) 
0 ' -  Tn(0, - 1 ) -  LI(0, - 1 ) '  

Mt, ic t , i  - - ,  i=1,2 
f 2,i -- M2.ic2,i 

~l(z, t ) -  T¢I(0, t) 
0 2 - - _  

Tp(0, - 1 ) -  T~I(0, - 1) 

T~2(~, t ) -  ~2(0, t) 
0 4 - -  

L~(o, - 1 ) -  L(o, 1) 

/ = 5 , 7 , 8 , 9  

T6(r, t ) -  f6(0, t) 
0 6 - -  

T~2(0, - 1 ) -  T~(0, 1) 

1)1,1('/:) - -  1)I, 1 (0) 1)2,1(T) - -  1)2,1(0) 
ll 2 - -  

1)1,1(0) 1)2.1(0) 

1) 1,2( "~ ) - -  1) 1,2( 0 ) 1)2,2( 27 ) -- /)2,2 (0) 
114-- 

1)2,2(0) 

i = 5 t o 9  

L(*, 1) -  L(0, 1) 
Ull - 'Fc2(0, - 1 ) -  Ts(0, 1) 

O l [ - l i ' l ( ° ° ) '  l k ' 1 (0 ) ]  - -  U I I - V l ' I ( 0 ) '  1)2'1(0)] i ~- 1, 2 
mi,1 - u i (oo)Ul[v l .dO) ,  Vz,l(0)] ' 

with corresponding k=2,  1; and mi, a =0  if ui=0 

U2[vj, d ~ ) ,  vk.z(0)] - U~[vl.2(0), v~.~(0)] 
, j = l , 2  

mj, z -  uj+2(oo)Uz[vx.2(O), V2,z(0)] 

with corresponding k = 2, 1 ; and m j, 2 = 0 if uj + z = 0 

Lffvi(O) i = 5 t o 9  ~=Tp(0, ~ 1 ~  Tcl~0~ 

~i=Lff1)2.1(O )' To2(0, - 1 ) -  Ts(0, 1) 

In deriving the initial steady-state temperature profiles addi- 
tional assumptions are made that, for each DPHE, the heat 
loss term is negligible; for the STHE, Ts(0, xs) is a linear 
function of xs. The governing partial differential equations are 
as follows 

2(l+u~)#O~ +fx ( l+f l  1) aO~ 
#t ' & 

=al(1 +ml,lul +m2,zU2)(02-Ol) 

-asO1 -a1(ml.1 - 1) e -{"2 +"')(' + 1)/2ul 

- -  a l to2 .1  e- (a2+aDO+ l)]211 2 

+2(1 +ul)  6(t+ 1)09(z, 1) (9) 
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002 2(1+u2)aO2 + ( l  + f2 , ) -  
Or " 0~ 

=a2(1 + mt, lUl  + m2,1u2)(Ol --02) 

+ a2  (m2,1 - -  1)  e - t a z  + ol)0 + 1)/2U2 

+ a2ml,1 e-(a2 +al)(t + 1)/2Ul 

+2(1 +u2) 5(t+ 1)06(z, 1)/ct (10) 

~ t  3 003 
--2(1 +U3) + r2(1 + f1 ' 2 )  OW 

---- a3(1 + m1,2U3 + m2,2u4)(04 -- 03) 

aa(a 4 -- a3)(mt, 2 -- 1) e-ta4-°3)~t + t)/2 
- -  a603 Jr U3 

a4_a3 e -{a4-a3) 

a3m2,2(a4 -- a3) e-{a' - a3)(t + 1)/2 
-I U4 

a4--a3 e - (aa-a3) 

+2(1 +u3) 5 ( t -  1)Ul~ (11) 

~ t  4 004 2(1 + ua) + ra(1 +f2,2) 0--~- 

= a4(1 + m1,2u3 + m2,2u4)(03 -- 04) 
aa(a 4 -- a3)mt, 2 e -  (a4 -a3)(t + 1)/2 

B3 
a4- -a3  e - (a4-a3) 

(a4--a3)(m2. 2 -- 1)a4 e -(a4-a3)(t + 1)/2 
I,l 4 

a 4 - a 3 e -  (a4 -a3) 

+2(1 +U4) 5(t+ 1)07(~, 1)C~ (12) 

00s ~5(1 + f s )  ~ 5  + (13) 2(1 + us) ~ + Ft (t)05 + F2(t)u5 = C3ulo 

00i ~0~ 0 2(1 + u ~ ) ~ - + z i ( l + f ) - - =  for i=6,  7, 8, 9 (14) 
c t  

Boundary conditions: 

Oi(z, - 1)=0, i=  1, 2, 4 (15a) 

0~(z, - 1) = 0j(z, 1) 

for i=  5, 6, 7, 8, 9 (15b) 

and corresponding j = 8, 4, 2, 1, 5. 

03(r, 1)=0 

Initial conditions: 

0i(0, t )=0  for i=  1 to 9 

where 

(15c) 

(16) 

F,(t)=[C, + C 2 [ ~ - ) j  /t + l'~l*'- ' 

~2(,)= C, - [C ,+  Cs[,T} ] A  + 1~1" 

(17) 

(18) 

and Ct to C 5 are intermediate constants in terms of temper- 
atures and physical parameters of the STHE and the liquid, 
shown in Ref. 4 or in Appendix 1. 

The MWR is applied to Equations 9-12 with Legendre 
polynomials chosen as the weighting functions for their orthog- 
onality properties. The procedure for deriving partial differential 
equations and formulating the matrix differential equations for 
the parallel-flow heat exchanger is shown in Appendix 2. The 

following approximate solutions are assumed 

0i(z, t )= (t + 1)U'(t)Xi(z), i=  1, 2, 4 (19a) 

03(z, t) = ( t -  1)O'(t)X3(Q (19b) 

which satisfy the boundary conditions specified by Equations 
15a and 15c, and 

U ' ( t )=  [1, t, (3t 2 -  1)/2, (513-30/2] (20) 

For Equations 13 and 14 the UWR is applied. The procedures 
for formulating the matrix differential equations for a single 
tube heat exchanger and a connecting pipe are shown in 
Appendix 1. Defining 

V t =  f l  U(t)e  -(=~+°1)('+t)/2 dt (21) 
j -  r 

V 2 = ~  1 U(t) e-(a4-a3)(t+l)/2dt (22) 

a3(a4--a3) bl - (23) 
a4--a3 e -(a4-a3) 

a4(a,--a3) b 2 - (24) 
a4 - - a3  e - (a4-a3) 

we obtain the following matrix equations 

rrl(1 +fl.t)S1]{)<l} + [2T1 + (at +as)S 1]{Xt} + [-alSl]{X2} 
+ [2T1 +atml, tS1]{X1}ut  + [ -a lm l , lS1 ] {X2}u l  

+ [alm2.1S 1]{Xt }uz + [ -  a,m2.1S t] {X2}u2 
+ [al(mt.1 - 1)Vt]ul + ralm2.1Vllu2 

=2(1 +u t )U  ( -  1)09(T , 1) (25) 

[(1 +f2.1)$1]{)<2} + [2T, +a251]{X2} + [ -a2Sl ] {X t }  
+ [ -  a2mt,l S 1] {Xt }u, + [a2mt.1S 1] {X2}ul 
+ [ -  a2m2, t S i]{X1}u2 + [2Tt + azra2,1S t]{X2}u2 
+ r - a2ml , lV t ] t t t  + r -  a2(m2,1 - 1)Vl]U2 

=2(1 + u 2 ) U ( -  1)06( % 1)/ct (26) 

[r2(l +f1.2)S2]{)<3} + [ -2T2 + (a3 +ae)S2]{X3} 
+ [ -  aaS,]{X4} + [ -2T2 +a3ml,2Sa]{X3}u3 

+ [ -a3ml .2Sl ] {X, }u3 + [a3m2.2S2]{X3}u, 

+ [ -- a3m2.2 S 1] {X4}u4 

+ [bl (ml.2 - 1)V2]u 3 + [blm2,2V2]u4 

=2(1 +u3)U(1)ut i (27) 

It3(1 +f2,2)S t ]{)(4} + [2Tx + aaS 1] {X4.} + [-a4.S 2] {X3} 
+ [-a4ml.2Sz]{X3}u3 + [a4mt.2St]{X,}u3 

+ [ - a4m2.2S2]{X3}u 4 + [2T, + a,m2.2 S 1]{X4}B4 

+ [ -bzml .2Vz]u3  + [ -  b2(m2.2 - 1)V2]u 4 

=2(1 +ua)U ( -  1)07(z, 1)~ (28) 

[ -(1 +fs)zs 9 S3] {)~s} + [T4]{XS} + [T3]{xs}u5 + [DT]u5 

+ [D s]os(% l ) + [D 3]usOa(z, 1) + [ (  l +~5)'rS D,,]Os(Z, 1) 

= [Dr]uto  (29) 
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(1 +f ) -~  S3J{)<,} + 3]{X,} + 3]{X,}u,+ [D3]0j('c, 1) 
q 

[T IT 

+[D3]u,Oj(,, 1 ) + [ ( l  + f ) ; '  D4]0j(z, 1)=0 (30) 

for i=6 ,  7, 8, 9 and corresponding j = 4 ,  2, 1, 5; where 

X i = [ x u ,  x2i, x3i, x,,i]', i=1  to 4, (31) 

and 

X~ = [O,(z, -½), O~(z, ~), O,(z, 1)]', i=  5 to 9 (32) 

The matrices S's,  T's and D 3 to D 6 are defined in Ref. 4. 
For the primary circulation loop, ul =us=us=u9 ,  and for 

the carrier circulation loop, u 2 = u4 = Us = uv. 
By combining Equations 25-30, the resulting matrix differ- 

ential equation governing a triple heat exchanger is obtained 
as follows 

[A ]  {)<} + [ B]{X} + [N 1]{X}ul + [N 2]{X}u2 + [N d{X}u3 

+[P1]ut  +[P2]u2+[P3]u3+[P , ]u lo+[Ps]u11=o  (33) 

It should be noted that the derivation of constants m1,1 to 
m2, 2 requires the plant to be subjected to only one of the liquid 
flow rate disturbances at a time. However other combinations 
of disturbances may occur concurrently. 

Conclusions 

A general mathematical model of the triple heat exchanger is 
developed by including the heat loss and assuming that the 
wall capacitance is additive to that of the fluid thermal 
capacitance in each of the heat exchangers and connecting pipes. 
In comparison with a model which includes the wall dynamics, 
the proposed one reduces the model order by 50% and thus 
shortens the computing time by 75%. However this procedure 
is only accurate provided that the wall capacitance is small 
in comparison with its respective fluid capacitance. Further 
reduction of computing time is achieved by assuming that the 
change of the overall heat transfer coefficient for a change of 
the fluid flow-rate is proportional to the change of the flow 
rate. In this case the matrices in the governing matrix equation 
are constant and their values require no repeated updating. 
Since the heat exchangers are properly insulated, the heat loss 
terms are usually small. Therefore the main purpose of inclusion 
of the heat loss terms in the triple heat exchanger is to obtain 
accurate steady-state temperatures. Their effects on the dynamic 
responses are expected to be minimal. Numerical solutions and 
experimental validation of the model are presented in Part II 
of this paper. 
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Appendix 1 
Solut ion of  equation for single tube heat exchanger 

The governing partial differential equation for the single tube 
heat exchanger is shown in Equation 13. The boundary 
condition is 

Os(z, - 1)=08(z, 1) 

The initial condition is 

05(0, t )=0  

Using the UWR, an approximate solution of the following 
form is assumed 

O(z, t) = qbi_ l(t)0(z, t i-  x) + ~bi(t)0(z, ti) for te (ti_ 1, q) 

where 

q~i- 1 = 1 -- (t - t i-  1 )/h- 

~,= ( t -  t,_ ,)/fi 
fi= ( t ~ -  t, _ 1) 

In the UWR formulation, the following weighting functions 
are used 

wi_ , =q~i- , +pfl(t) 

wi = 0i--Pfl(t) 

where 

fl(t)= 3 ( t - q - 1 ) ( t - t i -  l -h-)/ff 2 re(q-1,  q) 

p is the parameter which lies between 0 and 1. For the present 
work, p = 0.4. 

The residual Rs, i for the segment of STHE between t l-  1 and 
t,, where 

dq~,_ 
Os(z, q-  t )+  2(1 + Us) ~ t  ~ ~bs(Z, ti) 

1 
Rs.,(05) = 2(1 + Us) ~d~-  

+Zs(1 +f5)49i- x0s(Z, q -  1) +Zs(1 +fs)c~iOs( z, ti) 

+ Fx(t)~bi- lOs(z, q_ 1)d-Fl(t)~iOs('¢, t,) 

+ F2(t)U s -  C3Ulo (34) 

is orthogonalized with respect to the weighting functions w~_ a 
and w~ to yield 

f ~' wi_lRs, idt=O (35) 

and 

I " wiRs,, (36) d r=0  

Substituting Equation 34 to Equations 35 and 36 and evaluating 
the integrals, Equations 37 and 38 are obtained. 
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•. (1 + u s ) ( -  1 +p)O~(z, h - 0 + ( 1  +us)(1  -p )0~ (z ,  ti) 

"~5 +~(l+fs) (2--3~)Os(z , t , - , )+~(l+fs ' (1--3~)Os(z , t , '  

+Ci,1105('~, ti-1)+Ci,1205( "c, t~)+e~Alu5 

- -C3 2(1--PX~ul0  = 0  (37) 
\2 2/ 

.'. (1 +Us) ( -  1 -p)Os(z, h-  1)+ (1 + us)(1 +p)Os(z, tl) 

+;S(l+fs)(l+3~P)os(z,t~-l)+9 (l+fs)Q2+3~2)Os(z,t~) 

+Ci,2105(T, ti- 1)+Ci,2205('~, ti)+ei,21u5 

2[1 p~ . (38) 

If the STHE is partitioned into three segments of equal length, 
a total of six such equations is obtained. By discarding the first 
equation, adding the second and third and the fourth and fifth, 
and utilizing the sixth, Equation 29 is obtained, where 

( k2L5 )l/k, 
C*=~rhscs[Tv(O, 0 ) -  T~, (0, 0)]J ~ [Ts(0' 0 ) -  T j  

f k2L5 )l/k, 
C5 = _J~m,c~eTv(O, 0)-- T~I (0, O~ [ .__  [T5(O, L s ) -  T~(O, 0)] 

~i=[ei'111= ft '' [w/- 1]F2(t) dr, i=I, 2, 3 
Eel.21A ~_~ Wi 

0 7 = [-(el,21 +e2,11), (e2,21 +e3,11), e3,21]' 

Other relevant coefficients, matrices and their elements are 
given in Ref. 4. 

The solution of Equation 14 describing the pipe dynamics is 
a simplified version of the above derivation. By eliminating the 
terms involving F1, Fz, and C 3, and replacing fs by f, Equation 
30 is obtained. 

Appendix 2 
Formulation and solution of equations for parallel- flow 
heat exchanger 

Steady state temperature profiles are first derived by neglecting 
the heat loss effect• From Equations 1 and 2, put 8T/dt=O and 
h~,l =0  

dTv- al (T~t -- Tv) (39) 
dx~ L~ 

dT~ a: 
- (T  v -  Tc, ) (40) 

dxl L~ 

Using the Laplace Transform method, the solutions are obtained 
as follows: 

a2[1 _e - (~  + ~)~/r~] 
T,l (O, x l ) - Tv(O, O ) 

al + a2 

al Tcl(0, 0) (41) 
L at J a l + a 2  

Tv(O, xl)= a~ [l_e_(.,+~)Xl/L,]Tc~(O,O ) 
al +a2 

+ l l  +al e_(at+a2)x:/Ltl a ~  Tv(0,0) (42) 
m J a 2  a~ + a  2 

Using small perturbation technique and changing v1,1 etc. 
to vlA+Avl,t etc., and U~ to 

U1 +AU~ +AU'; = UI(1 +m m Aul +m2,1 Au2) 

the following equation can be obtained from Equation 1 

OAr, 0r,+(l +fl.~] 0At, 
( l + u l ) - - + u l - -  - -  

~xl dxl \ v1,1 / c~t 

2nr=A U 1 (1 + mlAul + m2,1u2) (ATe1 - ATp) 
rhl,tcL1 

2~zrm 1Ulml lul 2xrmA UlmzAu2 
_~ , , (Tc~-Tv)+ (T~I-T v) 

rhl.lcLl th1,1c1.1 

2xr4,1hL,1 
-~ - - ( - - A T v ) + ( I + u l ) t ~ ( x 1 ) A T 9 ( t ,  L9) (43) 

rhlAcL1 

with boundary condition ATv(t, 0)=0. 
Defining 

01 -- ATp 
Tv(O, O)- Tc,(O, O) 

AT. 
02 -- 

Tv(O, 0)-- Tct(O, O) 

AT9(t, L9) 
09(%" , 1) = 

Tp(O, O) - T~, (0, O) 

Equation 43 can be reduced to 

~01 =~+~2) t+1 2 ~01 
2(l+ul)~-t- t --ulale-~ ~ )/ +e~(l+flA) 

=al(1 +mlAUl +m2,1u2)(O2-Ol)-alml,tul e -~a~+aD~t+ 1)/2 

_alm2,1u2 e-~, +a2m+ 1)/2_a501 +2(1 +ul )  6(t+ 1)09(Z, 1) 
(44) 

with boundary condition 0~ (z, - 1) = 0. 
Rearranging Equation 44, Equation 9 is obtained. Equation 

10 can be derived by a similar method• The following equation 
can be obtained from Equation 2 

~AT~, ~T~+(I+f2A~aAT~I 
(1 + u 2 ) - - + u  2 - -  - -  

~X 1 6")X 1 \ /32,1 / '  St 

--2nr"'t  Ut(1 +mt'lut +mzAU2) (ATp-AT~I) 
~/2,1C2,1 

2~Zrm A U ~mlAu~ 2rrrm.t UlmzAU2 
-~ (Tv- T~)q (Tv- L1) 

m2Ac2A rh2AC2A 

+ (1 + Uz) 6(xl) A r6(t, L6) (45) 

with boundary condition ATc~(t, 0)=0. 
Further simplifications give the following equation 

aA~l 
2(1 +u2) - -  +a2u2 e -¢a~ +=2)0+ 1)/21-Tv(0 ' _ 1)-- Tcl (0, -- 1)] 

& 

~A Tct 
+ ( l + f 2 , 0 - -  ~z 

=a2(1 +mlAul +m2.1u2)(ATFv-ATcl) 
+ a2ml.tu 1 e-~'n +~2)0 + l)/2[Tv(0, _ 1 ) -  Tel (0, - 1)] 

+a2m2,1u 2 e-t=1 +a2)o + 1)/2[Tv(0, _ 1 ) -  Tel(0, - 1)] 

+2(1 +u2) 6(t+ 1) AT6(z , 1) (46) 

with boundary condition ATc~(z, - 1 ) = 0 .  
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Incorporating 

AT~(~, 1) 
06 ("¢ , 1 ) =  

To2(0, - 1 ) - T , ( 0 ,  1) 

and 

T,(0, - 1 ) -  T~,(0, - 1) 

into Equation 46, Equation 10 is obtained. 
The Equations 9 and 10 are solved by the MWR. The 

boundary conditions are shown in Equation 15a and the initial 
conditions in Equation 16. The residuals R~ and R2 are 
obtained by substituting the approximate solutions in Equation 
19a for i= 1 and 2 respectively. 

d 
R1 = 2(1 + ul) ~ [( t+ 1)U'(t)]X1 + ~1(1 +fl.1)(t + 1)U'(t))(1 

- a l (1  +m1.lul +m2,1u2)U'(t)(t + 1)(X2- X1) 

+as ( t+  1)U'(t)X1 +a i (ml ,1 -  1) e -(°~ +~2)t~+ 1)/2Ul 

+aim2,1 e-ta1+a2)(t+l)/2U2--2(1 -t-U1) 6(t-'~'- 1)09('¢ , 1) (47) 

d 
1)U'(t)]X2 + 1)U'(t))(2 R2 +u2) ~ [( t+ (1 +f , ,1)( t+ 

--a2(1 + ml.lUl + mz,lU2)LJ'(t)(t + 1)(X1 -X2)  

- a2(m2.1 - 1) e -(a~ +a2) t t  + 1)/2U2 

_a2ml.1 e-tO1 +=2)tt+ 1)/2ul --2(1 + u2) 6(t + 1)06(z, 1)/a 

(48) 

The residuals R 1 and R 2 are orthogonalized with respect to 
(J (t) to yield 

f~ U(t)R, dt=O (49) 

f l LJ(t)R2dt=0 (50) 
-1  

Substituting Equations 47 and 48 to Equations 49 and 50, 
respectively, and evaluating integrals, Equations 25 and 26 are 
obtained. 
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